

ADVANCED CONCRETE REPAIR MORTARS

AYDIN KHAJEPUR SIKA PARSIAN/ TM REFURBISHMENT

BUILDING TRUST

CONCRETE HAS TO WITHSTAND HARSH ENVIRONMENTS

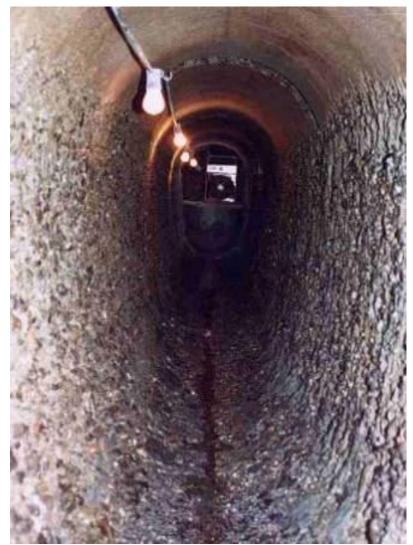
AND OFTEN CONCRETE NEEDS REPAIRING!

1. CONCRETE DAMAGES IDENTIFICATION

WHAT IS THE ISSUE WITH THIS CONCRETE?

WHAT HAS CAUSE THIS EFFECT TO THE SURFACE?

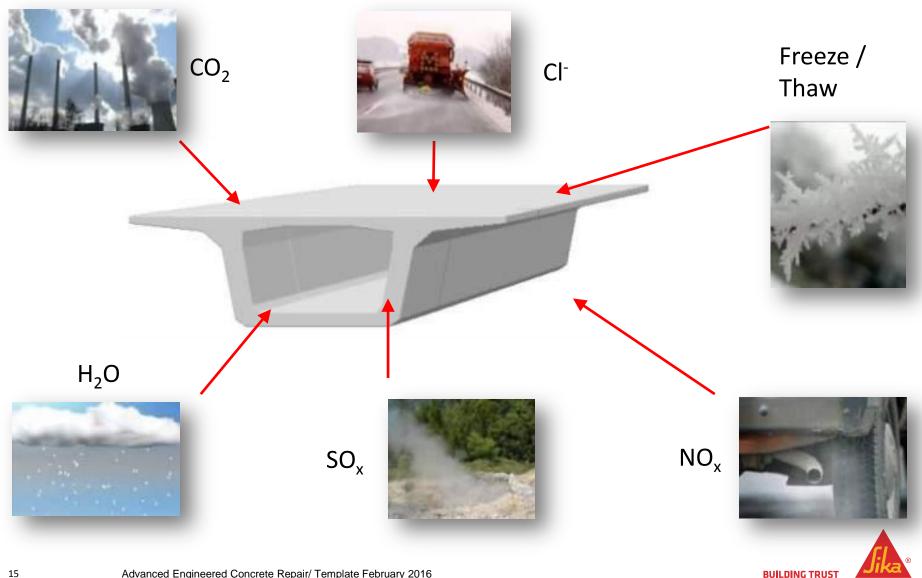
WHAT HAS CAUSED THIS SPALLING??



WHAT HAS CAUSED THIS DAMAGE?

WHAT HAS CAUSED THIS SURFACE DAMAGE?

WHAT IS HAPPENING TO THE CONCRETE HERE?


FINALLY..... WHAT IS THE PROBLEM HERE?

2. CAUSES OF CONCRETE DAMAGE

EXPOSURES ROOT CAUSES CORROSION CARBONATION CHLORIDE ATTACK

EXPOSURES ON REINFORCED CONCRETE

ORIGIN OF DECAY ARE MULTIPLE

1. DEGRADATION	2. DESIGN ERRORS		3. WORKMANSHIP		4. WEATHERING	
Chemical & Physical Incidences	Overload	Re-Bars	Concrete Strength	Concrete Cover	Carbonic gas	Wear & tear
	Cracks		Corrosion			ĕ nation
CONCRETE DECAY						

ROOT CAUSES OF CONCRETE DAMAGE

MECHANICAL ATTACK

- Impact, overloading, movement
- Vibration, earthquake, explosion

PHYSICAL ATTACK

- Freeze-thaw, thermal movement, shrinkage
- Salt crystal expansion, erosion, abrasion, wearing

CHEMICAL ATTACK

- Alkali aggregate reaction, aggressive chemicals
- Bacterial, biolgical, efflorescence, leaching

BUILDING TRI

REINFORCEMENT CORROSION

CHEMICAL ATTACK

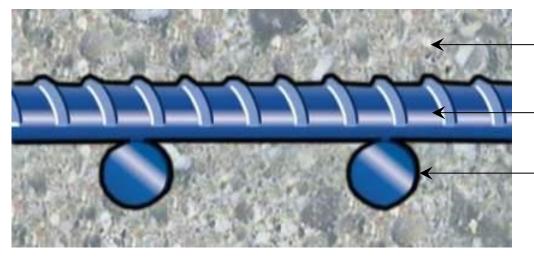
- Carbonation
- Acids

CORROSIVE CONTAMINANTS

Chlorides

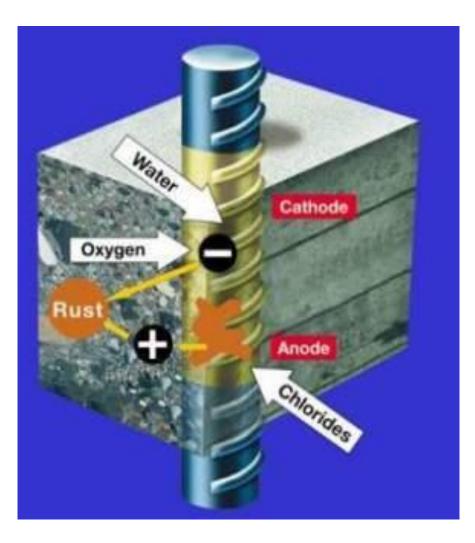
STRAY ELECTRIC CURRENT

- Metals of different electro potential connected to each other
- From power supply or transmission works



BUILDING TRUS

PROTECTION OF STEEL IN CONCRETE


Alkaline environment protects reinforcing steel from corrosion

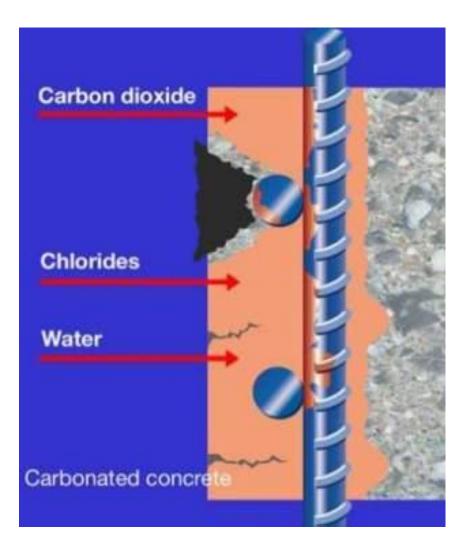
- Concrete pH 12.5 13.5
- Reinforcing steel
- Passive iron oxides with max.
 layer thickness ~10Å (1.0 nm)

CONDITIONS FOR CORROSION OF STEEL IN CONCRETE

STAGE 1

Breakdown of the protective layer

- By carbonation
- By chlorides


STAGE 2

Electrochemical process requires

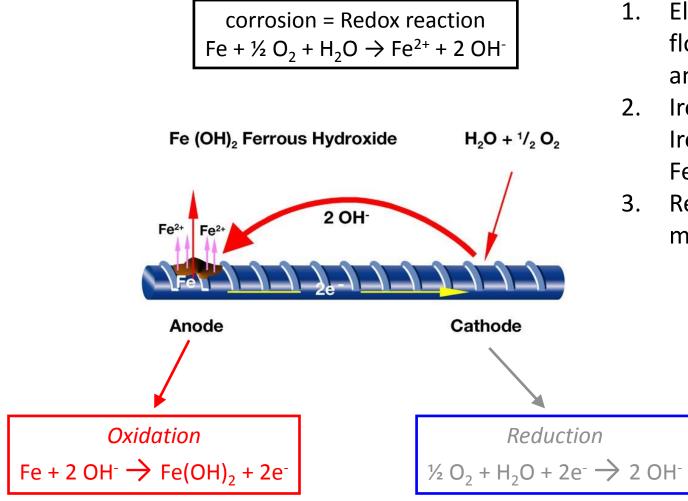
- Electrolyte (moist concrete matrix)
- Anode
- Cathode

CORROSION OF STEEL IN CONCRETE

Concrete (pH = 12.5-13.5) Steel is protected.

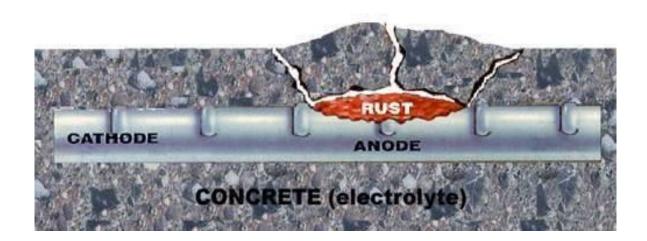
INITIATION PHASE

Destroying passive layer.. Carbon dioxide/chlorides enter. pH reduces. Steel unaffected


PROPOGATION PHASE

Steel Corrosion..

Moisture and oxygen causes corrosion of steel


CORROSION PROCESS

- Electrical current flows between the anode and cathode
- Iron(Fe) oxidised into Iron Hydroxide Fe (OH)₂
- Results in increase in metal volume

RESULT OF STEEL CORROSION IN CONCRETE

Volume of corrosion product is approx. 2,5 times bigger than black steel \rightarrow delaminating load \rightarrow spalling!

PROBLEM OF STEEL CORROSION

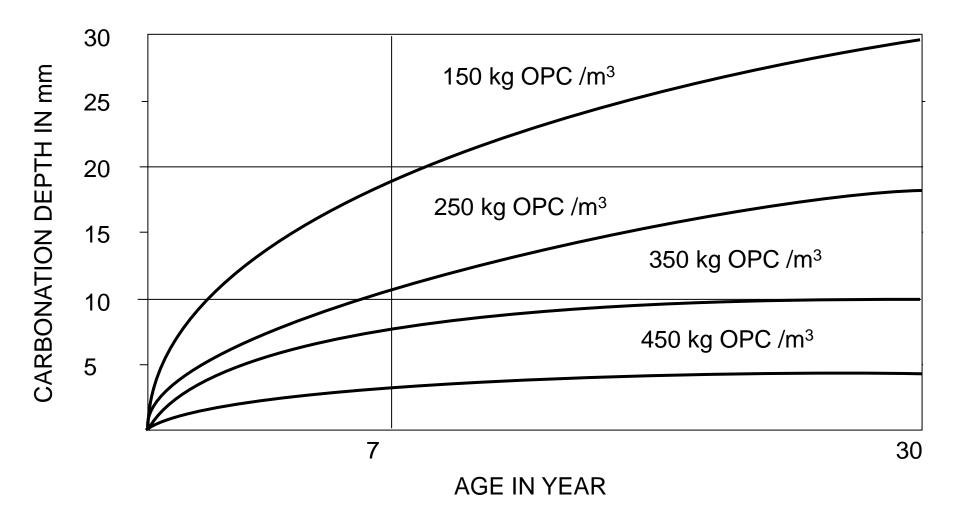
There is no "early warning system" for steel corrosion

It is the physical degradation of the steel reinforcement itself indicating the structure is exhibiting signs of distress

"Reactive" corrosion monitoring

INFLUENCES OF STEEL CORROSION IN CONCRETE

INDIRECT INFLUENCES


- Design joints, cover
- Concrete cement, type & content, water cement ratio, mixed
- Application cracks, gravel nests, curing, surface finishing
- Conditions humidity 50-70%, exposure conditions

DIRECT INFLUENCES

Chlorides, atmospheric acidic gas, chemical attack

INFLUENCE OF CONCRETE QUALITY

CARBONATION OF CONCRETE STRUCTURE

Acidic gasses in atmosphere reacting cement hydration

CARBONATION DEFINITION

Reaction of the free Calcium-Hydroxide $Ca(OH)_2$ in concrete with cardon-dioxide CO_2

Calcium-Hydroxide Ca(OH)₂ = slaked lime; reaction of cement clinker and water

Calcium Carbonate **CaCO₃** = Limestone

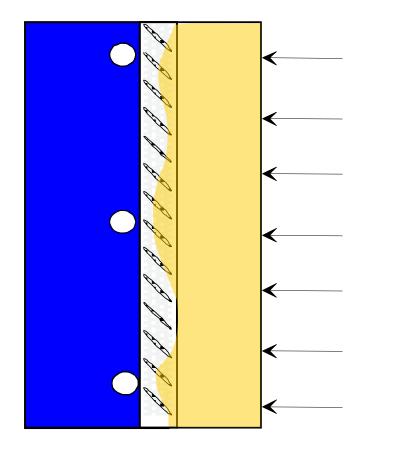
Chemical equation:

CORROSION DUE TO CARBONATION PROCESS

Reduction of rebar: approx. $2/_{100}$ to $2/_{10}$ mm per year

BUILI DING TRU

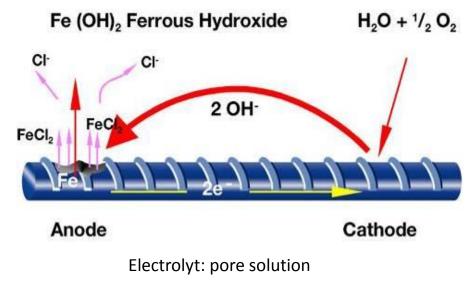
CHLORIDE ATTACK



- De-icing salt
- Sea water
- Industry salt (softening agent)
- Edible salt (cheese dairy, food production)
- Swimming pool (saline bath, water treatment, etc.)
- Magnetite floors (MgCl₂)
- Combustion of PVC

CHLORIDE INGRESS

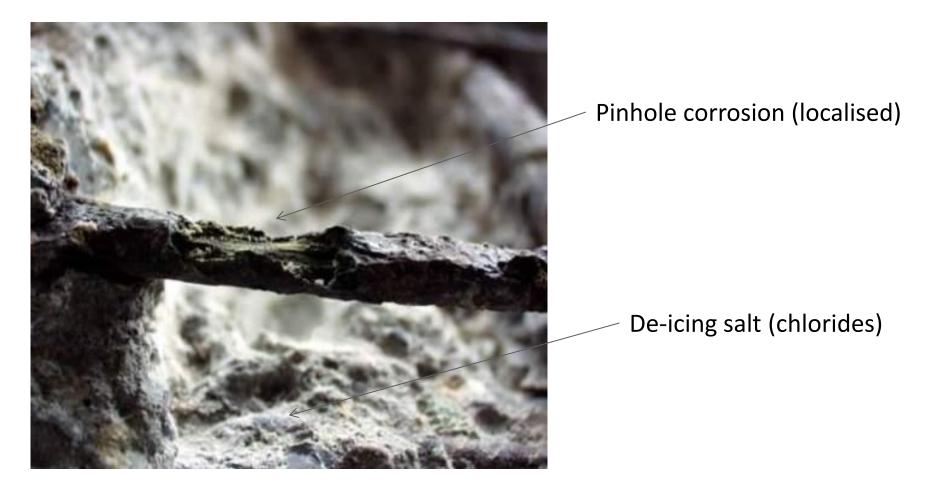
INFLUENCES


- Amount of chloride
- Concrete permeability
- Degree of moisture present

CONSEQUENCE

- Destroy passivity around steel
- Cause steel corrosion
- Concrete cracks and delaminates

PINHOLE CORROSION CAUSED BY CHLORIDES



Particulars

- Small surface of Anode ; large surface of Cathode
- Enrichment of chlorides
- Acceleration (catalyst) of reaction. Acid ambience.
- ➔ Fast, local reduction of cross-section

CORROSION DUE TO CHLORIDE

CORROSION OF REBARS DUE TO CHLORIDE

Reduction of rebar: approx. 1 to 10 mm per year!!

OTHER ATTACKS ON CONCRETE

- Frost Damage
- Alkali Aggregate Reaction (AAR) (Full Wiki Page in Connections)
- Chemical attack
- Sulphate attack External (free) or internal (DEF)
- Leaching
- Etc..

FROST DAMAGE

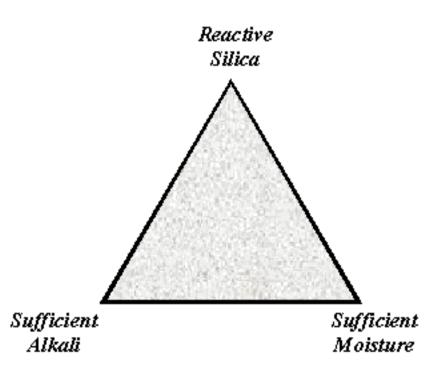
- Mainly occurs in <u>saturated</u> concrete
- When approximately **91%** of pores are filled with water
- The freezing ice occupies ~ 9% more volume than water
- If there is no room for the water to expand, then it can distress concrete
- Commences with first freeze thaw-cycle
- Continues over successive winters
- Sometimes difficult to diagnose
- Hand in hand with other mechanisms (e.g. AAR)
- Then difficult to diagnose the initial damage mechanism

FROST DAMAGE RECOGNITION

Indications (if other mechanisms are excluded)

- Spalling and scaling of the surface
- Large chunks breaking off
- Exposing of aggregate
- Possible un-cracked exposed aggregate
- Parallel surface cracking
- Possible gaps around aggregate

ALKALI AGGREGATE REACTION (AAR)


Certain natural aggregates react chemically with alkalis present in Portland cement

ALKALI-SILICATE REACTION

Three essential components:

- Reactive silica (from aggregates)
- Sufficient alkalis (mainly Portland Cement)
- Sufficient moisture

Eliminating any one will effectively prevent ASR damage

Unrestrained concrete element crazing cracking

Uniform expansion in all directions

Restrained cracking mainly in direction of main reinforcement bars

EROSION BY CHEMICAL ATTACK

Concrete is alkaline therefore susceptible to acid attack

Dissolution of calcium hydroxide

Acidic environments can result in deterioration of exposed concrete surfaces

Depends on concrete porosity, concentration of acid, solubility of acid salts and migration through concrete

TYPES OF ACID

SULPHURIC ACID

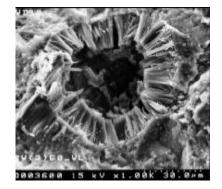
Very damaging as it combines an acid attack (soluble salt) and a sulphate attack

VERY AGGRESSIVE – Resulting salt easily soluble in water

- Nitric acid
- Hydrochloric acid
- Acetic acid

OTHERS – Resulting salt with low solubility (blockage of reaction)

- Phosphoric acid
- Humic acid


FREE - SULPHATE ATTACK

Sulphate solutions which react with calcium hydroxide and calcium aluminates, (C_3A)

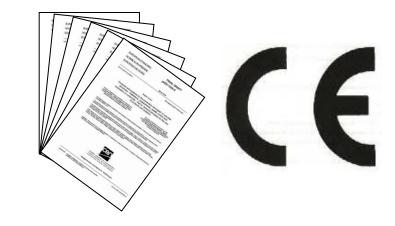
SULPHATE – ETTRINGITE FORMATION

- Sulphate is present in cement
- Early ettringite formation normally occurs in mortar

$$C_3A + 3(CaSO_4 2H_2O) + 26 H_2O$$
 $C_3A 3C\overline{S} \cdot H_{32}$

- Ground gypsum reacting with calcium aluminate and water
- Additional, sulphate-based expansive agents for shrinkage compensation

3. STANDARDS & TEST METHODS


BUILDING TRUST

STANDARDS AND REQUIREMENTS

Europe: EN 1504

The EN 1504 consist of 10 main parts (EN 1504-1 to EN 1504-10) which covers about 65 standards for test methods for atmospherically exposed, buried and submerged concrete structures.

EN 1504

Products And Systems For The Protection And Repair Of Reinforced Concrete

- Definitions
- Requirements
- Quality Control
- Evaluation Of Conformity

EN 1504 - BACKGROUND

International – all EU countries since 2009

Most comprehensive repair specification in the world

Covers:

Material specifications and quality

> Repair and maintenance principles

Site investigation

Refurbishment strategies

Site application

IN-SCOPE

EN 1504 is about

> Environment and mechanical attack

- Corroding reinforcement
- Preventive maintenance
- > Most of the repair and refurbishment projects Sika are involved in

OUT-SCOPE

EN 1504 is not about

Fire damaged structures

Modification due to change of use

Aesthetic improvements such as floor screeds, renders and plasters

Post tensioned structures

DEFINED PROJECT PHASES

- Information about the structure
- Process of assessment
- Maintenance strategy
- Design of repair work
- Repair work
- Acceptance of the works

THE 10 PARTS

Part	Content
Part 1	Definitions
Part 2	Surface protection systems
Part 3	Concrete repair with mortars
Part 4	Structural bonding
Part 5	Concrete injection
Part 6	Products and systems for grouting anchor reinforcement
Part 7	Reinforcement corrosion protection
Part 8	Quality control and evaluation of conformity
Part 9	General principles for use of products and system
Part 10	Site application of products and systems and quality control of the works

EN 1504-9 - PRINCIPLES

- Different types of damage and the root causes existed for many years
- The correct repair and protection methods have also been established
- This knowledge summarized by 11 Principles in Part 9
- Systematic approach to repair
 - Principles 1 to 6 relate to defects in the concrete
 - Principles 7 to 11 relate to damage due to reinforcement corrosion

PRINCIPLES AND METHODS

Principle	Description	Method
Principle 1 (PI)	Protection against ingress. Reducing or preventing the ingress of adverse agents, e.g. water, other liquids, vapour, gas, chemicals and biological agents.	 1.1 Hydrophobic Impregnations 1.2 Impregnations 1.3 Coatings 1.4 Surface bandaging of cracks 1.5 Filling of cracks 1.6 Transferring cracks into joints 1.7 Erecting external panels 1.8 Applying membranes
Principle 2 (MC)	Moisture control. Adjusting and main- taining the moisture content in the concrete within a specified range of values.	 2.1 Hydrophobic impregnations 2.2 Impregnations 2.3 Coatings 2.4 Erecting external panels 2.5 Electrochemical treatment
Principle 3 (CR)	Concrete restoration. Restoring the original concrete to the originally specified profile and function. Restoring the concrete structure by replacing part of it.	3.1 Hand applied mortar3.2 Recasting with concrete or mortar3.3 Spraying concrete or mortar3.4 Replacing elements

Principle 4 (SS)	Structural strengthening. Increasing or restoring the structural load bearing capacity of an element of the concrete structure.	 4.1 Adding or replacing embedded or external reinforcing bars 4.2 Adding reinforcement anchored in pre-formed or drilled holes 4.3 Bonding plate reinforcement 4.4 Adding mortar or concrete 4.5 Injecting cracks, voids or interstices 4.6 Filling cracks, voids or interstices 4.7 Prestressing (post-tensioning)
Principle 5 (PR)	Physical resistance. Increasing resistance to physical or mechanical attack.	5.1 Coatings 5.2 Impregnations 5.3 Adding mortar or concrete
Principle 6 (RC)	Resistance to chemicals. Increasing resistance of the concrete surface to deteriorations from chemical attack.	6.1 Coatings 6.2 Impregnations 6.3 Adding mortar or concrete

PRINCIPLES AND METHODS

Principle	Description	Hathod
Principle 7 (RP)	Preserving or restoring passivity. Creating chemical co ditions in which the surface of the reinforc ment is maintained in or is returned to a passive condition.	 7.1 Increasing cover with additional mortar or concrete 7.2 Replacing contaminated or carbonated concrete 7.3 Electrochemical realivalisation or carbonated concrete 7.4 Realkalisation of carbonated concrete by diffusion 7.5 Electrochemical chloride extraction
Principle 8 (IR)	Increasing resistivity. Increasing the electrical resistivity of the concrete.	8.1 Hydrophobic impregnations8.2 Impregnations8.3 Coatings
Principle 9 (CC)	Cathodic control. Creating conditions in which potentially catho- dic areas of reinforce- ment are unable to drive an anodic reaction.	9.1 Limiting oxygen content (at the cathode) by saturation or surface coating
Principle 10 (CP)	Cathodic protection.	10.1 Applying an electrical potential
Principle 11 (CA)	Control of anodic areas. Creating conditions in which potentially anodic areas of reinforcement are unable to take part in the corrosion reaction.	 11.1 Active coating of the reinforcement 11.2 Barrier coating of the reinforcement 11.3 Applying corrosion inhibitors in or to the concrete

Sika MonoTop®-412 N R4 Structural Repair Mortar Broduct Description Sika MonoTop®-412 N is a 1-component, fibre reinforced, low shrinkage structural repair mortar meeting the requirement of class-R4 of EN 1504-3. Uses Suitable for restoration work (Principle 3, method 3.1 & 3.3 of EN 1504-9). Repair of spalling and damaged concrete in buildings, bridges, infrastructure and superstructure works. Suitable for structural strengthening (principle 4, method 4.4 of EN 1504-9). Increasing the bearing capacity of the concrete structure by adding mortar. Suitable for preserving or restoring passivity (principle 7, method 7.1 and 7.2 of EN 1504-9). Increasing cover with additional mortar and replacing contaminated or carbonated concrete. Tested application under live dynamic loading

Example Product Data Sheet

DURATION EUROPEAN TEST METHODS

Test Method	Approximate Total Test Duration
Compressive Strength	During 28 days up to 91 days
Chloride Ion Content	~0.5 day
Adhesive Bond	After 28 days
Restrained Shrinkage Expansion	During 28 days up to 91 days
Carbonation Resistance	~3 months
Elastic Modulus	After 28 days
Thermal Compatibility	~5.5 weeks (freeze-thaw)
Coefficient of Thermal Expansion	After 28 days
Capillary Absorption	~1.5 weeks

According to test methods Table3 EN 1504-3

NORTH AMERICAN GUIDELINE

Guide to Materials Selection for Concrete Repair

Reported by ACI Committee 546

ACI 546.3R-14

American Concrete Institute Aiways advancing

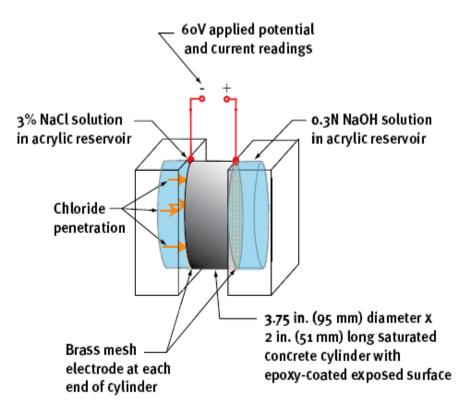
AMERICAN CONCRETE INSTITUTE

ACI 546.3R-14

Guide to Materials Selection for Concrete Repair

EUROPEAN AND ACI COMPARISON

Performance Characteristic	European Test Method	ASTM Test Method
Compressive / Flexural Strength	Y	Υ
Tensile strength	No requirement EN 1504-3	Y
Chloride Ion Content	Y	Y
Adhesive Bond	Υ	Y
Slant shear bond	No requirement EN 1504-3	Y
Restrained Shrinkage Expansion / Length change	Υ	Y
Carbonation Resistance	Y	
Elastic Modulus	Υ	Y
Freeze Thaw	Y	Y
Scaling resistance	No European test method*	Y
Coefficient of Thermal Expansion / Thermal Expansion	Y	Y
Skid / Abrasion Resistance	Υ	Y
Capillary Absorption	Y	Y
Creep	Certain uses (anchoring)	Y
Rapid chloride permeability	No European test method*	Y
Alkali aggregate reaction	No requirement EN 1504-3	Y
Sulphate resistance	No requirement EN 1504-3*	Υ



NORTH AMERICAN APPROACH TO DURABILITY

Service Conditions	Related Characteristics	Standard Test Method
Climate: Temperature fluctuations Ambient Moisture	Thermal expansion/contraction Freezing and thawing resistance	Freeze-Thaw – ASTM C666 Proc A &B
Exposure: Applied salts/salt water, Aggressive chemicals	Chloride permeability Scaling resistance Chemical resistance	Chloride Perm. – ASTM C1202 Scaling Resistance – ASTM C672
Loads: Traffic, wind, earthquake	Abrasion resistance Creep/shrinkage Strength Modulus of elasticity	Abrasion – ASTM C 944 Creep – ASTM C 512 Shrinkage - ASTM C 157 Elasticity - ASTM C 469 Strength - ASTM C39

RAPID CHLORIDE PERMEABILITY DETERMINATION OF ELECTRICAL CONDUCTANCE

Fig. 1: Schematic of rapid chloride permeability test setup

- ASTM 1202
- Concrete core
- Coated epoxy
- Vacuum saturated with water
- Remove & expose one end to Sodium Chloride (NaCl) the other end Sodium Hydroxide (NaOH)
- Apply 60 V potential
- Measurements every 30 minutes for 6 hours

RATING SYSTEM

CHLORIDE ION PENETRABILITY BASED ON CHARGE PASSED

Charge passed, coulombs	Chloride ion penetrability
>4000	High
2000 to 4000	Moderate
1000 to 2000	Low
100 to 1000	Very low
<100	Negligible

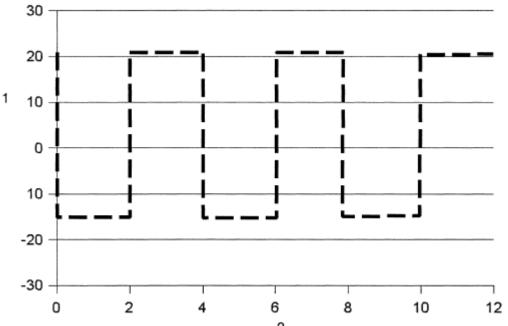
As chlorides penetrate deeper pore solution becomes more conductive and current readings increase

Area under graph of time vs. current gives charge passed, Coulomb

Does not measure depth or rate of chloride penetration

DURABILTY TESTING

FREEZE-THAW TEST METHODS


- 50 cycles European EN 13687-1
- ~300 cycles North American ASTM C666

ASTM C672 Scaling

- 200 (EN 13687-1) cycles Polish Standard
- 400 cycles Swiss Standard BEII

EUROPEAN FREEZE-THAW TEST

THERMAL COMPATIBILITY EN 13687-1

- Samples 300 x 300 test plates
- Apply and cure 6d under water
- 21 day in controlled conditions
- Inspect surface
- Store x2 under water 24 hours
- Begin shock FT cycle
- 2h immersed vertically in sodium chloride (-15 \pm 2) deg
- 2h stored in water tank vertically (+21 \pm 2) deg
- 50 cycles
- Inspection every 10 cycles, record cracks flacking etc
- Performance related to pull off strength EN 1542
- Classify according T.3 EN 1504-3

SCALING

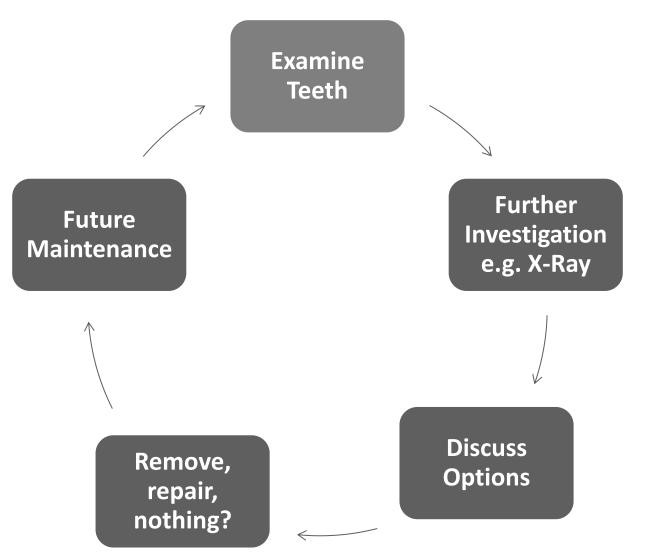
Apart from steel corrosion, the repeated action of de-icing chemicals has the potential to cause scaling, pitting and spalling of concrete surfaces.

THEORY

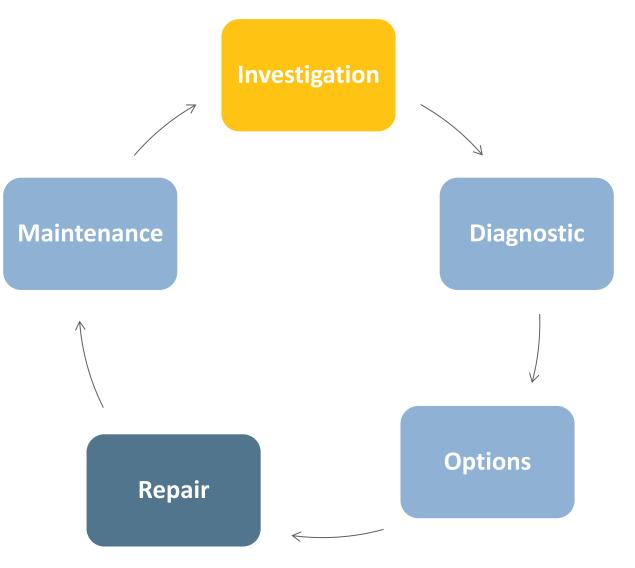
- 1. De-icing chemicals melt the ice
- 2. The concrete thaws
- 3. Melt water is absorbed by concrete
- 4. The concrete surface becomes more saturated
- 5. If concrete surface freezes, it undergoes a freeze-thaw cycle

The surface would not undergo a freeze thaw cycle had it remained frozen.

4. THE REPAIR PROCESS


AT THE DENTIST

Repairing concrete is very much like going to the dentist



KEY STAGES AT THE DENTIST

5 KEY STAGES IN CONCRETE REPAIR

INTERVENTION STRATEGY

PROACTIVE

- Ideally early warning system but;
 Inability to monitor steel corrosion;
 Would be costly
- Ideally, a monitoring strategy
 - Owner's responsibility
 - Planned maintenance schedule
 - Budget to cover costs

REACTIVE

- The reality
- Indication by physical degradation
 - > Often too late, damage is done
 - Time lapse to actual repair
 - Sometimes no survey
 - Sometimes no planning
 - Lead to unsuccessful repair
 - Vltimately, costly

SURVEY/MONITORING

Crack width (mm)

2,50

2,00

1,50

1.00

0,50

0,00

0,3

0,4

etermination of roug

AIM OF INVESTIGATION/MONITORING

Determine the **<u>effect</u>**

Identify the cause

What is the **consequence**?

KEY STAGES

STAGE 1 – VISUAL INSPECTION

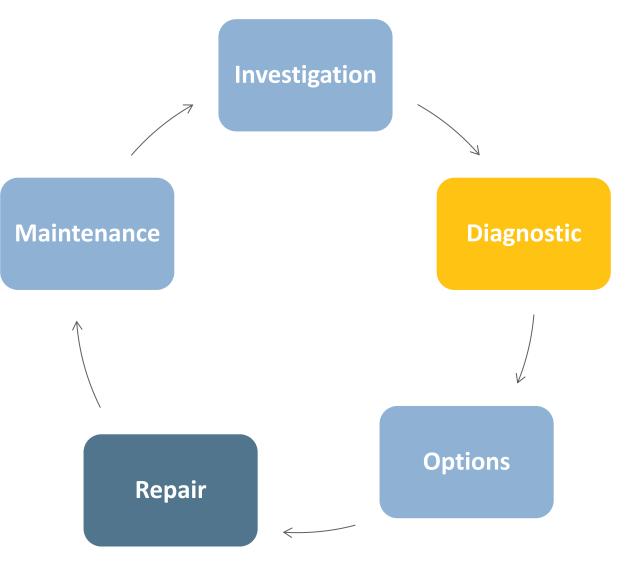
- Review past, current & future use
- Visual aspects

STAGE 2 - DIAGNOSTIC

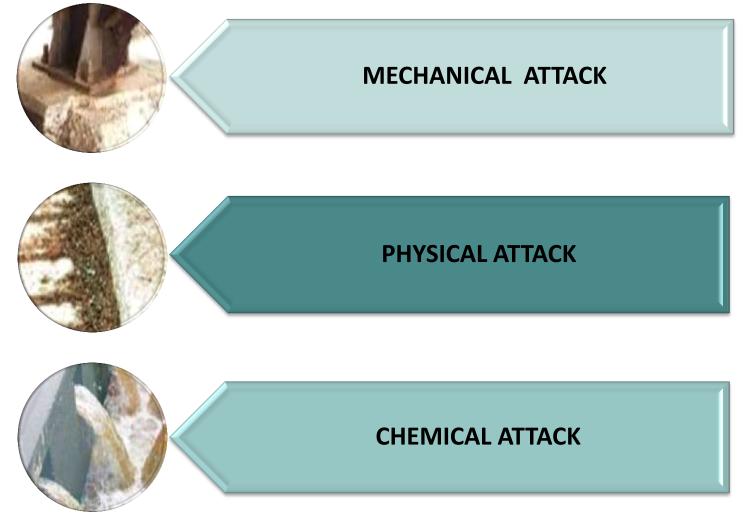
- Non-destructive testing
- Destructive test or probing
- Laboratory analysis

STAGE 1 – VISUAL INSPECTION LOOKING FOR THE OBVIOUS

- Environmental influences
- Service influences
- Visual damages


REPORTING VISUAL INSPECTION

- Service conditions
- Cracks
- Spalling concrete
- Bar corrosion
- Discolouration
- Damp patches
- Efflorescence
- Cavities
- Surface texture
- Etc.



5 KEY STAGES IN CONCRETE REPAIR

KNOWN ROOT CAUSES OF CONCRETE DAMAGE

MECHANICAL PROPERTIES

- i. SURFACE HARDNESS TESTING
- ii. WINDSOR PROBE
- iii. CYLINDRICAL CORE TESTING
- iv. SURFACE TENSILE STRENGTH
- v. ULTRASONIC PULSE VELOCITY (UPV) TEST

I. REBOUND HAMMER

- EN 12504
- ASTM C805

- Determines **surface** hardness
- Shows general uniformity
- Identifies potential problems
- It is NOT compressive strength

I. HAMMER SOUNDING

Tapping a concrete surface to determine the presence of delaminating or bonding problems

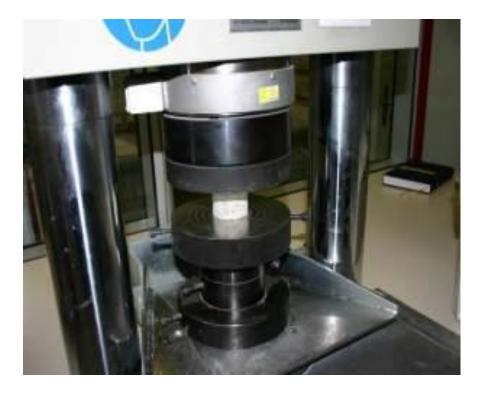
e.g. ASTM C803

II. WINDSOR PROBE

Can determine compressive strength of hardened concrete

e.g. EN 12390-1

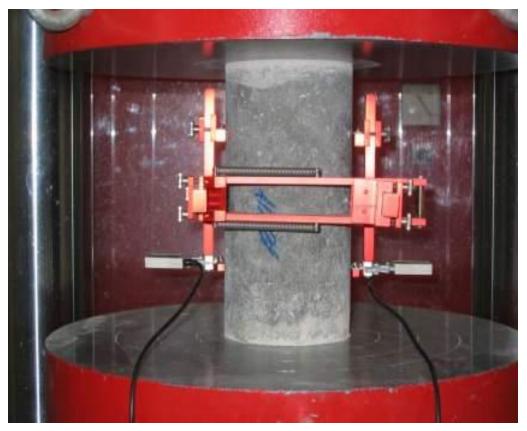
III. CYLINDRICAL CORE TESTING


Cores drilled out of concrete can determine

- 1. Compressive strength
- 2. Static E-Modulus
- 3. Carbonation depth
- 4. Density

COMPRESSIVE STRENGTH

e.g. EN 12504-1 ASTM C39 / C42



Core test to determine compressive strength of the concrete

STATIC E-MODULUS IN COMPRESSION

e.g. ASTM C469 ISO 6784

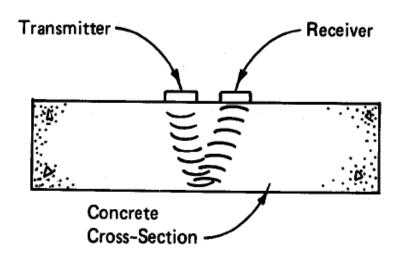
Test on drilled core sample to determine static modulus of elasticity in compression

TEST FOR CARBONATION DEPTH

IV. SURFACE TENSILE STRENGTH

Indication of concrete strength by pull off measurement

e.g. EN 12504-2


V. ULTRA PULSE VELOCITY

Transmit a wave of fixed frequency through a transmitter and receiver

USES OF ULTRA PULSE VELOCITY

- Concrete uniformity
- Presence of voids, cracks etc
- Layer thickness
- Monitoring

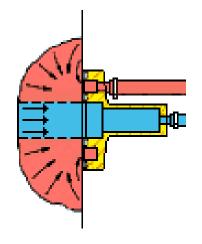
PHYSICAL PROPERTIES

- i. CONCRETE COVER SURVEY
- ii. PERMEABILITY TEST
- iii. GAS DIFFUSION TEST
- iv. SORPTIVITY TEST

VI. CONCRETE COVER SURVEY

Can measure location, bar size and depth of reinforcement embedment

Simple location using magnets



VII. CONCRETE PERMEABILITY

Vacuum cell

Determine permeability of a concrete surface

e.g. BS 1881-208

VIII. GAS DIFFUSION TEST

Determines initial surface absorption of concrete

Rate of flow of water into concrete surface subjected to 200 mm constant head

e.g. DIN 1045

IX. ABSORPTION TEST

Measuring water penetration depth after subjected to a specified bar water pressure for 3 days

CHEMICAL TESTING

- i. CARBONATION TESTING
- ii. CHLORIDE CONTENT TESTING
- iii. PETROGRAPHY TEST
- iv. CORROSION SURVEY (HALF CELL POTENTIAL)
- v. CORROSION SURVEY (LINEAR POLARISATION)

e.g. EN 14630

X. CARBONATION TESTING

Acid based indicator indicates parts of concrete which are not carbonated (purple)

e.g. EN 14629

XI. CHLORIDE TESTING

Dust samples collected from concrete for analysis of free chloride content

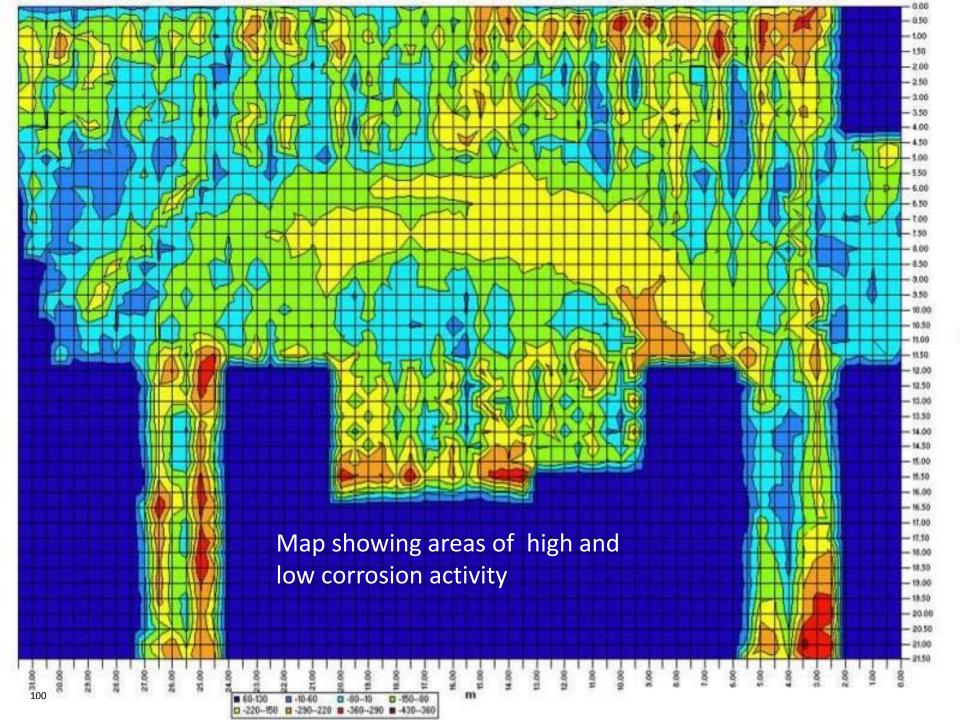
Chloride test kit

XII. PETROGRAPHY ANALYSIS

MICROSCOPY TECHNIQUE

- Detailed examination of concrete
- Evaluation of distressed concrete
- Quality and quantity of material
- Nature and causes of deterioration

e.g. ASTM C876-87


XIII. HALF CELL POTENTIAL

- Measures potential corrosion activity
- Identify corrosion risk at early stage
- Does not determine corrosion rate
- Does not determine degree of corrosion

FURTHER REFERENCES

ACI 201.1R-08 – Guide for Conducting a Visual Inspection of Concrete in Service

ACI 364.1R-07 - Guide for Evaluation of Concrete Structures before Rehabilitation

ACI 228.2R-98 – Non-Destructive Test Methods for Evaluation of Concrete in Structures

THE CONCRETE SOCIETY– Diagnostic of Deterioration in Concrete Structures

ICRI - Guideline N° 210.4-2009 Guide for Non-Destructive Evaluation Methods for Condition Assessment, Repair and Performance Monitoring of Concrete Structures

BUILDING RESEARCH ESTABLISHMENT (UK) – Digest 444 Part 1 Corrosion of Steel in Concrete, Durability of Reinforced Concrete Structures - Digest 434 Corrosion of

Reinforcement in Concrete, Electrochemical Monitoring

FURTHER REFERENCES

EUROPEAN STANDARD - EN 1504-9 General Principles for the Use of Products and Systems

YOUR COUNTRY?

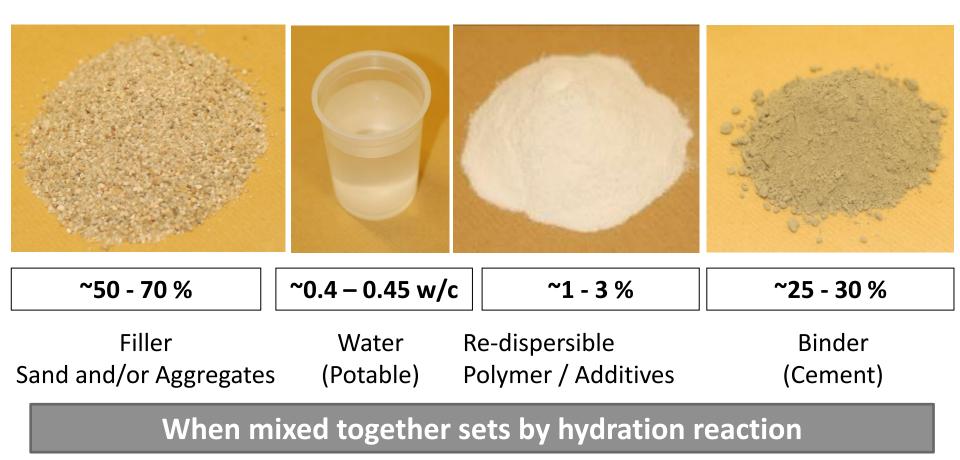
5. MATERIAL TECHNOLOGY

BUILDING TRUST

MATERIAL TECHNOLOGY

European Standard EN	1504 defines three	main groups of mortars
-----------------------------	--------------------	------------------------

- **CC** Cement Concrete
- **PCC** Polymer modified cement concrete
- ECC Sika Speciality Modified Epoxy (EpoCem)
- PC Polymer Concrete


CEMENT CONCRETE (CC)

~50-70 %	~0.4 -0.45 w/c	~25-30 %	
Filler	Water	Binder	
(Sand and/or Aggregates)	(potable)	(Cement)	
When mixed together sets by hydration reaction			

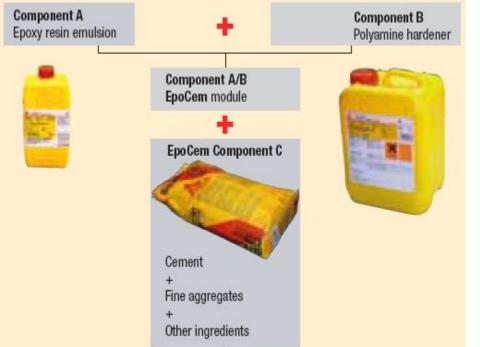
CC mortars contains additives to modify properties

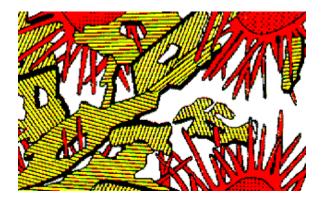
POLYMER CEMENT CONCRETE (PCC)

Polymer may be added 5 – 15 % by weight of cement

POLYMER DISPERSIONS

Polymers form films and adds binding domains within the cement pore system


Polymer Dispersion (Liquid State)


Re-dispersible Polymer Powder

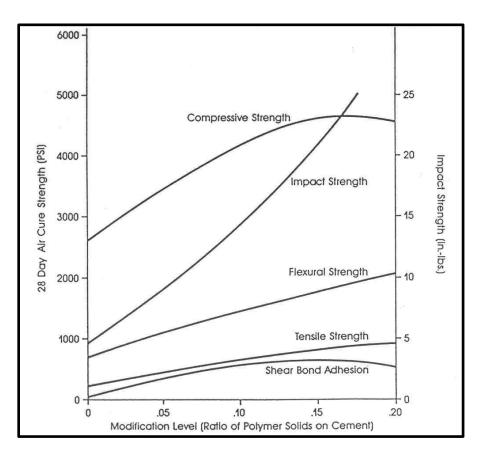
EPOXY CEMENT CONCRETE (ECC)

20 years best experiences and references, worldwide.

Combining the physical properties of the cement with the positive chemical properties of a water based epoxy resin

SHRINKAGE

PLASTIC SHRINKAGE	DRYING SHRINKAGE	CHEMICAL SHRINKAGE	AUTOGENIOUS SHRINKAGE	THERMAL SHRINKAGE
Evaporation of Water		Reaction	Self desiccation	
Drying out of concrete surface BEFORE it has set	Drying out of concrete surface AFTER it has set	Volume of fresh material is greater than volume of hardened material	Water consumption from cement hydration at low water- cement ratio	Temperature gradient causing strains
FACTORS INFLUENCING SHRINKAGE				
 Grading curve Wind Temperature Solar radiation Curing W/C ratio Shrinkage reducer Accelerators 	 Wind Temperature Solar radiation Curing W/C ratio Shrinkage reducer Accelerators 	Natural occurrence	 Grading curve Shrinkage reducer Accelerators Internal curing 	 Structural thickness Hydration temperature Fast cooling of surface

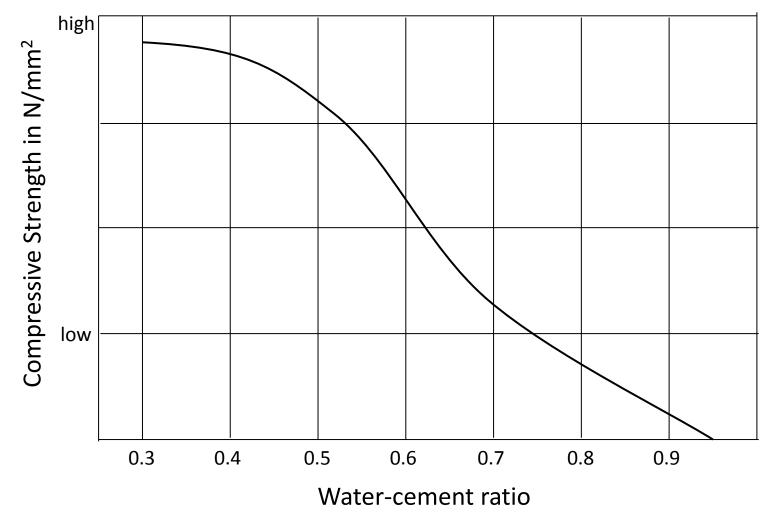


DISADVANTAGES OF UNMODIFIED MORTARS

- High water demand for workability
- Potentially incomplete hydration (especially thin sections)
- Poorer adhesion
- Poorer chemical resistance
- Lower freeze/thaw stability
- Lower durability
- Higher brittleness
- Lower tensile and flexural strength
- Lower abrasion resistance
- Lower impact resistance

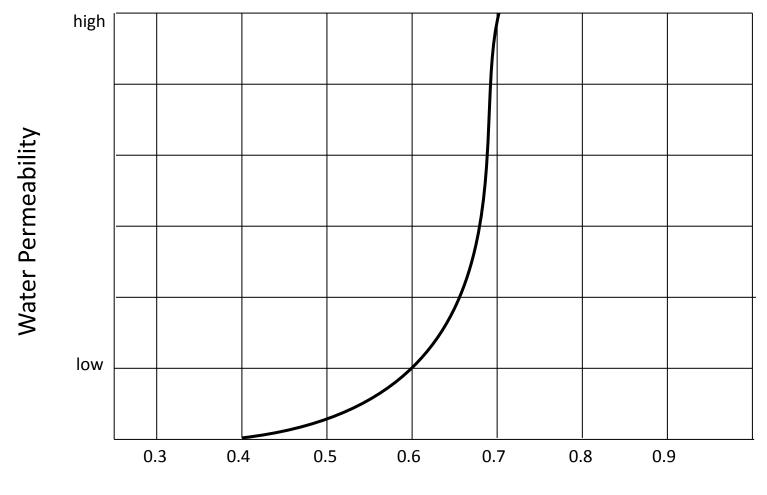
POLYMER EFFECTS

- Increase flexural strength
- Increase bond strength
- Reduced permeability
- Increase protection against corrosion

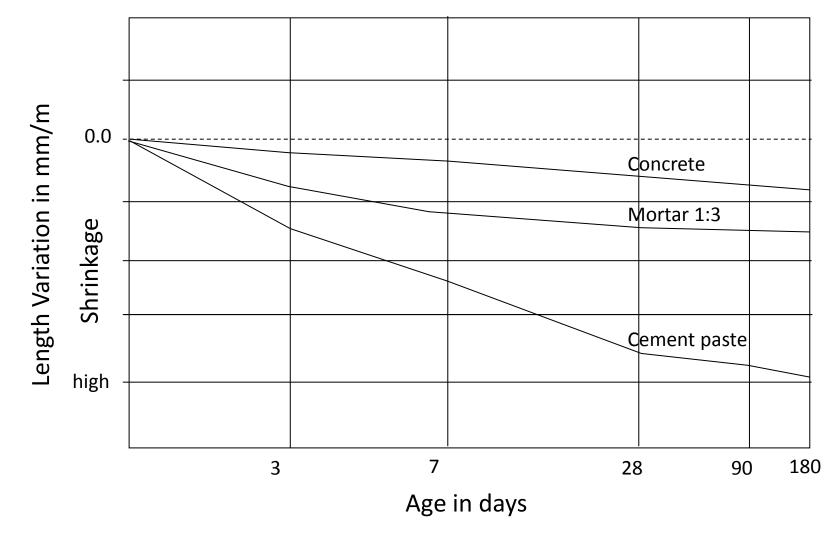


MORTAR TECHNOLOGIES

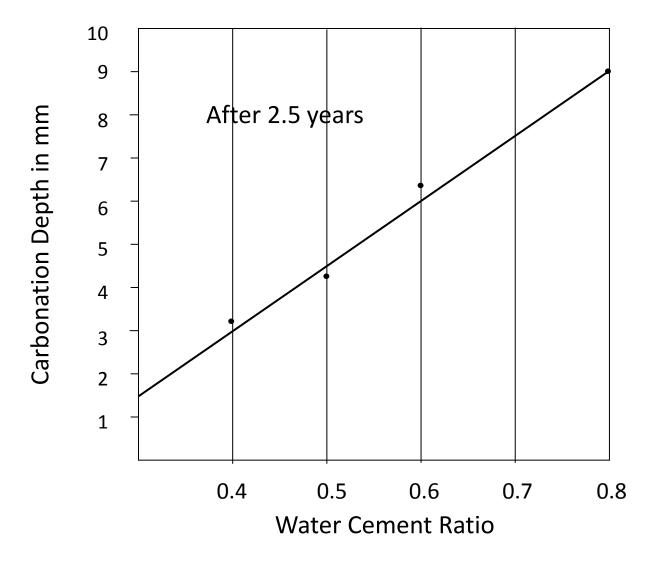
- Mechanical strengths
- Physical resistance (Freeze/Thaw action, shrinkage, etc.)
- Chemical resistance
- Abrasion resistance
- Fast hardening and setting time
- Workability
- Application at low / high temperatures
- Etc...



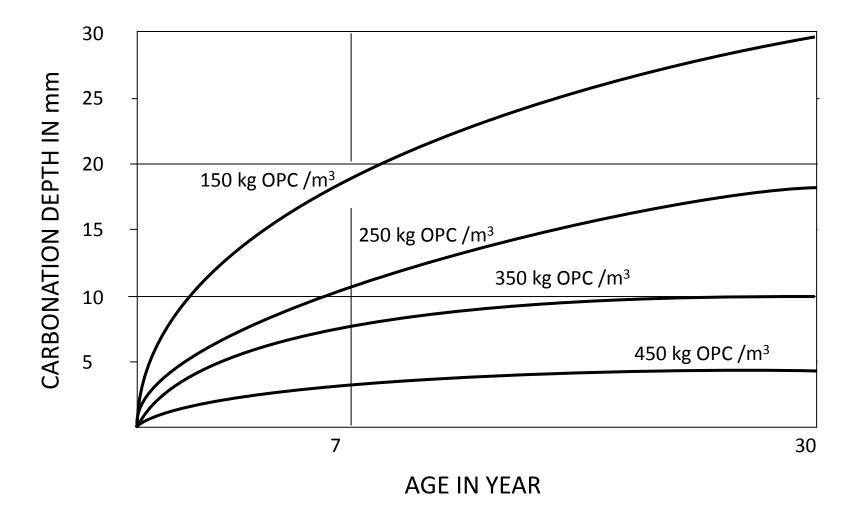
COMPRESSIVE STRENGTH AND WATER CEMENT RATIO


WATER PERMEABILITY & W/C RATIO

water-cement ratio

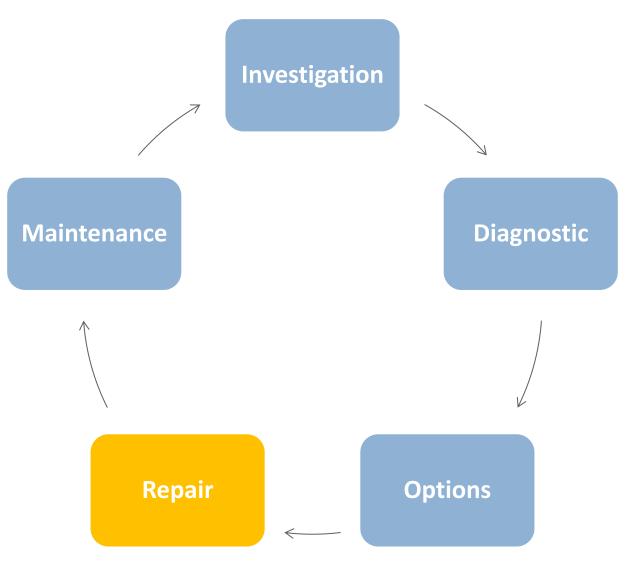


SHRINKAGE OF CONCRETE, MORTAR & CEMENT PASTE



W/C INFLUENCE ON CARBONATION (STANDARD MORTAR)

INFLUENCE OF CONCRETE QUALITY ON CARBONATION



6. CONCRETE REPAIR SYSTEM

BUILDING TRUST

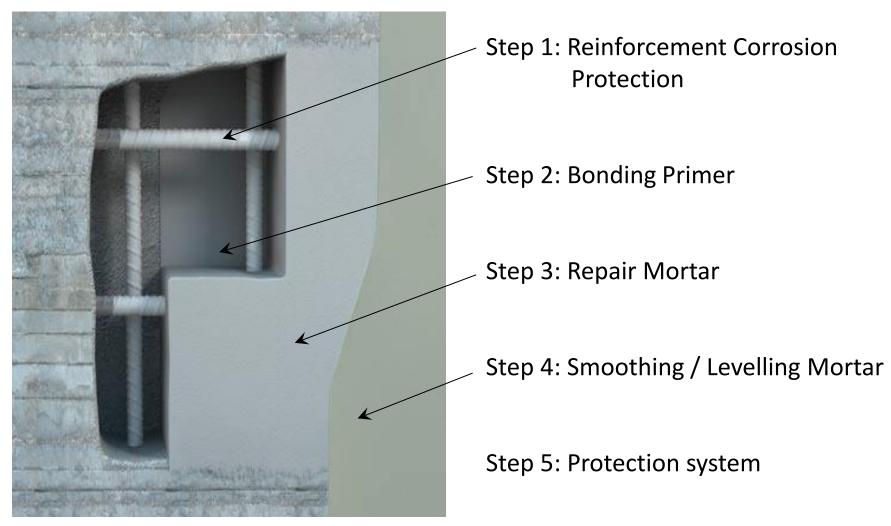
5 KEY STAGES IN CONCRETE REPAIR

METHODS OF REPAIRING CONCRETE

- Conventional patch repair
 - Mostly necessary
- Electrochemical techniques
 - Cathodic Protection (CP)

Galvanic Cathodic Protection (GCP)

- Impressed Current Cathodic Protection (ICCP)
- Electrochemical Chloride Extraction (ECE) or Chloride Extraction (CE)
- Electrochemical Realkalisation
- Corrosion inhibitors
- Surface treatments



OBJECTIVES OF CONCRETE REPAIR

- Replace defective concrete
- Restore structural integrity
- Restore aesthetic appearance
- Restore geometric appearance
- Restore durability

CONCRETE REPAIR SYSTEM

APPLICATION TECHNIQUES

Traditional by Hand

Spray Techniques

Form and Pour

DEMONSTRATION KIT

SHOW CONCRETE REPAIR

- No power-point
- No pictures
- Something practical
- Something to touch

KEY STAGES OF CONCRETE REPAIR

REMOVAL DAMAGED CONCRETE

SUBSTRATE AND STEEL PREPARATION

APPLICATION OF REPAIR MORTAR

FINISHING

BEST DEMONSTRATED PRACTICES

1-COMPONENT MIXING

REINFORCEMENT & SUBSTRATE DETAILS

REINFORCEMENT CORROSION PROTECTION

Repair mortar applied wet on dry

BONDING PRIMER

Repair mortar applied wet on wet

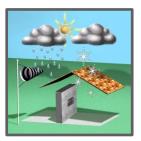
BEST DEMONSTRATED PRACTICES

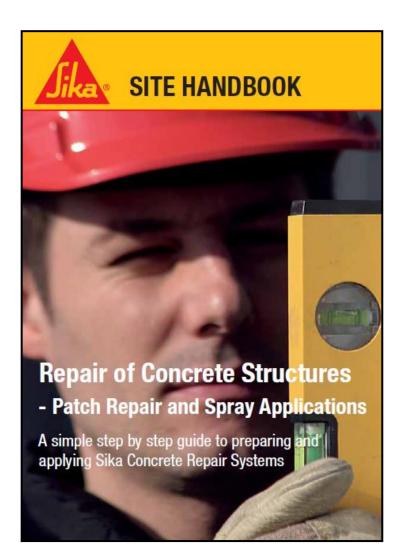
HAND APPLICATION

SPRAY TECHNIQUE

Experienced Contractors only

LEVELLING MORTARS





HANDBOOKS

PATCH REPAIRS

- Step by step application procedure
- Pictures with minimal text

Sika Concrete Handbook

CONCRETE TECHNOLOGY

Recommended

BUILDING TRU

PLANNING

- Quantity and size of repairs
- Permanent or temporary repair
- Availability of repair materials
- Service environment
- Time available
- Access
- Noise, dust and vibration
- Waste disposal

REMOVAL OF CONTAMINATED CONCRETE

Shall not effect the structural integrity

SURFACE ROUGHNESS

Exposing the aggregate and roughen ~2mm

PROBLEM 1: WRONG MIXING

Damages due to wrong mixing ratio:

- cracks
- Iow adhesion to substrate
- increased porosity

The amount of mixing water can be varied within the limitations stated by the material supplier. Reasons:

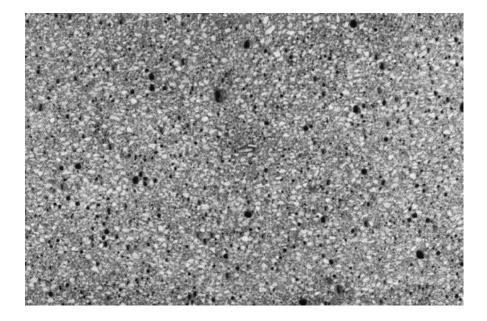
- Environmental conditions (temperature, humidity, etc.)
- Type of application (hand, spray application)
- Position of application (horizontal, vertical, over head)

PROBLEM 2: INSUFFICIENT MIXING

Effects of insufficient mixing:

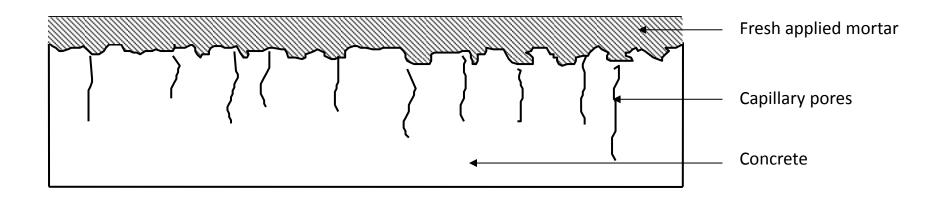
- reduced workability
- shortened set-time
- increased air content, reduced density
- increased shrinkage, crack formation
- reduced strength, etc.

Insufficiently mixed material results in poor material!


PROBLEM 2: INSUFFICIENT MIXING

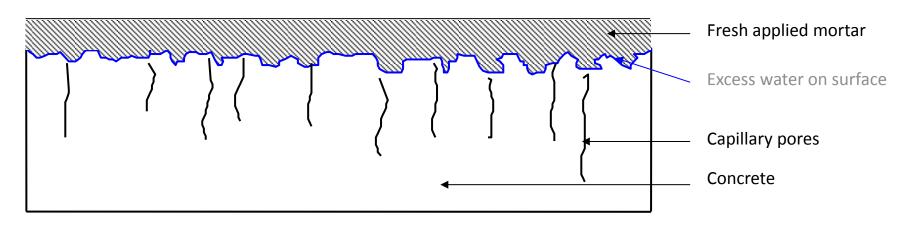
- → right mixing equipment (no ordinary concrete mixer)
- mixing time according to supplier recommendation (2-3 minutes)
- → ~400 rpm (additional air entraining results in "whipped cream")
- → suitable size mixing container for the intended amount of mortar

PROBLEM 3: APPLICATION BY HAND



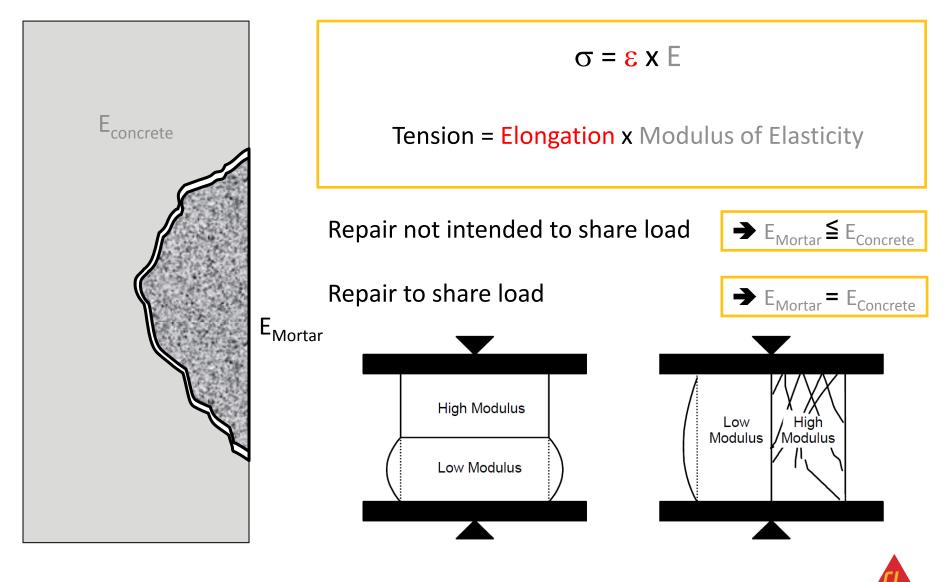
Effects of insufficient compaction:

- insufficient adhesion to the substrate
- reduced strengths (tensile and bond strength)
- increased water absorption
- increased CO₂-diffusion rate


PROBLEM 4: NO PRE-WETTING

- Concrete extract water from fresh repair material
- Cement particles in the interface zone cannot hydrate completely
- Insufficient hydration results in reduction of bonding behaviour

PROBLEM 5: EXCESS WATER ON SUBSTRATE



- Excess water on surface cannot absorbed by concrete
- Too much water results in higher Water/Cement ratio and creates pores in the interface layer and the reduce the bonding surface
- This results in reduction of bonding behaviour
- Water layer on surface: 0.1 mm \rightarrow 0.1 l water per m²
- New W/C ratio by additional 0.1 l per m²: 0.61

Increasing of W/C ratio: +42%

PROBLEM 6: WRONG REPAIR MATERIAL

BUILDING TRUS

PROBLEM 8: WRONG CUTTING

- Remove excess mortar with a sharp steel plate. Do not use a wooden bar!
- Cut the mortar carefully without moving repair material too much → result in less bonding behavior

PROBLEM 9: WRONG FINISHING

- Start with finishing process if repair mortar are setting (approx. 40 minutes @ 20° C)
- Close pores and small voids with humid but not wet sponge
- Smoothing surface with metal trowel

INCIPIENT ANODE

Incipient meaning just in the beginning or earliest stages of development

- High alkaline patch repairs
- Re-passivated steel bars
- Surrounding concrete still contaminated
- In suitable conditions
- Electrochemical activity
- New anode can form

JOB SITE ISSUES......

PREPARATION

No safety equipment No training/ no PDS No Investigation/diagnostic Weak or too strong substrate Wrong material Incorrect material storage Expired material No material (late delivery) Insufficient material Missing or wrong tools No water/pressure or electricity No surface preparation, roughen Not removed contamination Prep too strong, micro cracks Bars not cleaned No cleaning or pre-wetting No edge preparation Exceeds min/max layer thickness

APPLICATION

No training Wrong tools SInadequate mixer or bowel Part or wrong mixing Inadequate mixing time Too much/little mixing water Adding water after pot time Outside ambient conditions Contaminated surface Exceed max layer thickness Exceed open time Substrate too wet No scratch coat No layer build up Over working material Low application pressure Not filling behind bars No preparation between layers No pre-wet between layers

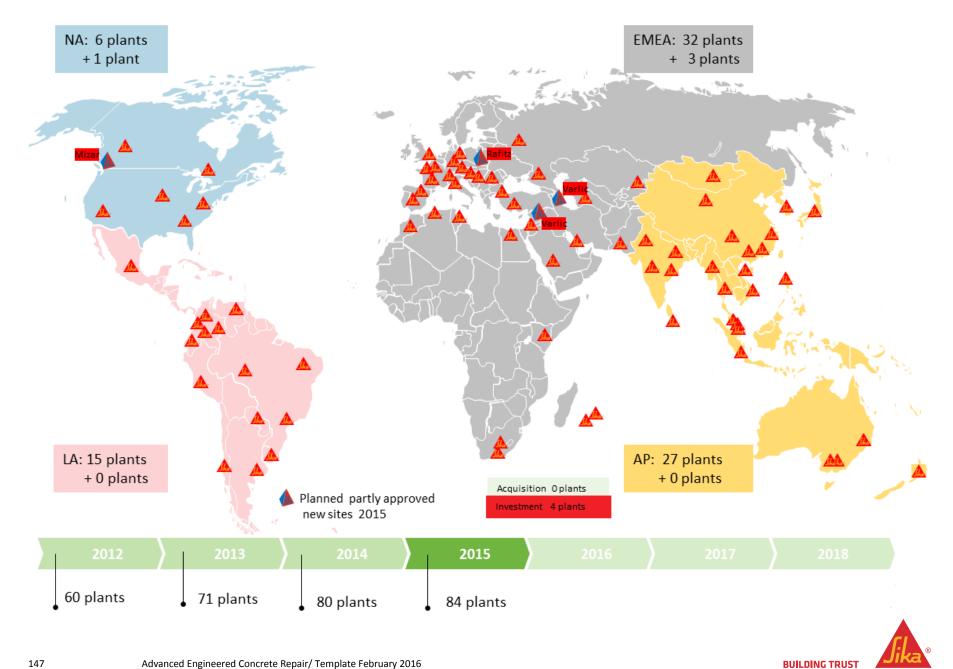
AFTER APPLICATION

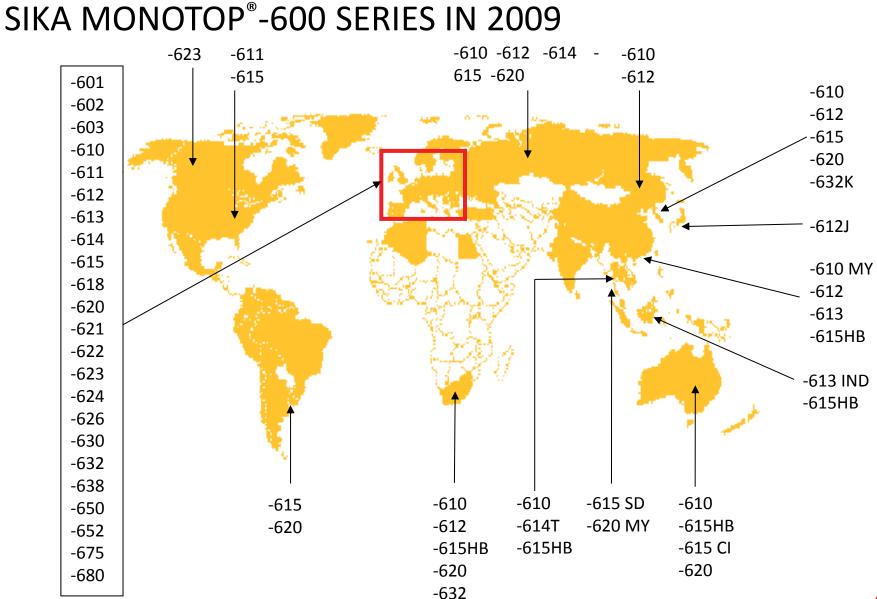
No training No curing Wrong curing material Wrong finishing tools Premature drying Exposure to sun/wind/frost Over finishing surface Adding more water/raining Service conditions (vibration) Loaded to soon

DRY SPRAY PROCESS

- Highest output
- Rarely equipment blockages
- Less cleaning of equipment
- Long equipment life
- No premixing required
- Higher early strengths
- Long feed distances
- Frequent stop/start sequences are easy
- Thicker layers in a single operation

WET SPRAY PROCESS


- Better yield
- Minimal rebound
- Minimal site protection required
- Suitable in confined spaces
- Easy trowel finishing
- Easier QC-procedures
- Reduced dust generation
- Constant mortar consistency

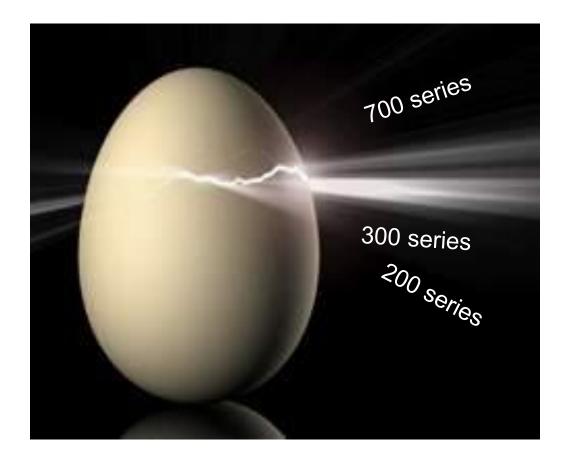


7. PRODUCT RANGE

NAMING POSITIONING

GLOBAL PROJECTS WITH GLOBAL CUSTOMERS

BUILDING TRUST


THE OPPORTUNITY

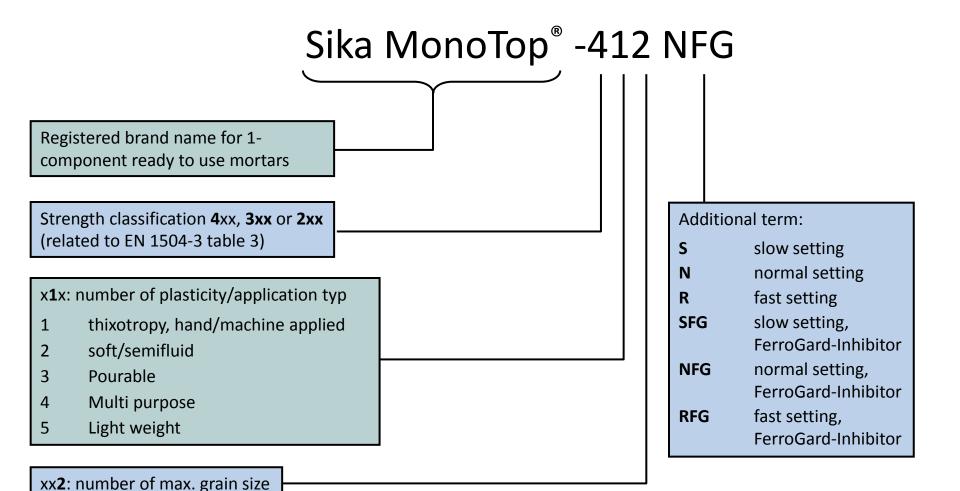
- New harmonised European
 Standard EN 1504-3
- Attestation of Conformity
- Quality Control
- CE Marking

IMPROVED SIKA MONOTOP® SYSTEM

"the harmonised global generation of concrete repair "

FORMULATION IMPROVEMENTS

- Latest cement technology
- New additives
- Optimised grading
- Dense mortar structure
- Improved workability
- New shrinkage technology


MARKET REQUIREMENTS

- Choice normal or slow setting mortars
- Polymer or non-polymer modified
- Structural or non-structural application
- Rapid setting mortars
- Lightweight mortars
- Pourable mortars

NAMING SYSTEM

CORPORATE PRODUCT OVERVIEW

PRODUCT	SUMMARY
Sika MonoTop-910 N	1C PCC cement slurry, applied by hand or spray as a coating; carbon dioxide and water vapour diffusion resistant, EN1504-7; 25kg & 2x5kg bags
SikaTop Armatec-110 EpoCem	3C epoxy modified cement - EpoCem technology; A+B liquid and dry powder C component. Long open time even at high temperatures. Passes EN1504-7. Hand or spay applied.
Sika MonoTop-412 NFG	1C PCC thixotropic repair mortar, BEII; corrosion inhibitor; 6-50mm layers; A1 fire rating; low rapid chloride permeability (ASTM)
Sika MonoTop-412 N	1C CC; 6-50mm layers
Sika MonoTop-352 NFG	1C PCC; lightweight mortar; corrosion inhibitor 4-75 mm layers; low rapid chloride permeability (ASTM)
Sika MonoTop-352 N	1C CC;lightweight mortar; 4-75 mm layers
Sika MonoTop-211 RFG	1C PCC; fast setting; corrosion inhibitor; 4-60mm layer; low rapid chloride permeability (ASTM)
Sika MonoTop-723 N	1C; R3 to EN1504:3; A1 fire rating : French sulphate and sea water resistance NF P 18837
Sikagard-720 EpoCem	R4 to EN1504:3; EpoCem technology; TMB, chemical resistant

FROM KNOW IT..... TO DO IT

IF YOU NEED A DENTIST FOR CONCRETE REPAIR, ASK A SIKA SPECIALIST

THANK YOU FOR PARTICIPATING

